Phys 402
 Fall 2022
 Homework 4
 Due Wednesday, 28 September@10 AM as a PDF upload to ELMS

1. Starting with the definition of $J^{2}=(\vec{L}+\vec{S}) \cdot(\vec{L}+\vec{S})$, show through explicit calculation that it can be written as $J^{2}=L^{2}+S^{2}+2 L_{z} S_{z}+L_{+} S_{-}+L_{-} S_{+}$, utilizing the raising and lowering operators $L_{ \pm}=L_{x} \pm i L_{y}$, and $S_{ \pm}=S_{x} \pm i S_{y}$.
2. Griffiths and Schroeter Quantum Mechanics, $3^{\text {rd }}$ Ed., Problem 4.38 (Combining spin$1 / 2$ particles into composite particles)
3. Griffiths and Schroeter Quantum Mechanics, $3^{\text {rd }}$ Ed., Problem 4.40 (More C-G!)
4. Griffiths and Schroeter Quantum Mechanics, $3^{\text {rd }}$ Ed., Problem 7.4 (General two-level system perturbation theory)
5. Griffiths and Schroeter Quantum Mechanics, $3^{\text {rd }}$ Ed., Problem 7.21 (Splitting of the Balmer H_{α} line due to spin-orbit interaction)
6. Griffiths and Schroeter Quantum Mechanics, $3^{\text {rd }}$ Ed., Problem 7.42 (Using the Feynman-Hellmann theorem to find $\left\langle\frac{1}{r}\right\rangle$ and $\left\langle\frac{1}{r^{2}}\right\rangle$ for Hydrogen)
7. Griffiths and Schroeter Quantum Mechanics, $3^{\text {rd }}$ Ed., Problem 7.45 (Stark Effect degenerate perturbation theory.) For part (b), don't do any of the integrals, just use this result for the W-matrix (i.e. the perturbing Hamiltonian matrix elements between the degenerate eigenstates):

$$
\overline{\bar{W}}=\left(\begin{array}{cccc}
0 & 0 & -3 e a E_{\text {ext }} & 0 \\
0 & 0 & 0 & 0 \\
-3 e a E_{\text {ext }} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text {, where the rows and columns are in }
$$

the order of $|200\rangle,|211\rangle,|210\rangle,|21-1\rangle$. For part (c), you DO NOT need to calculate the electric dipole moments of the states!

EXTRA CREDIT

4. Griffiths and Schroeter Quantum Mechanics, $3^{\text {rd }}$ Ed., Problem 7.48 (Crystal field splitting)

